
Roman Vyjídáček

Seminář 1: Úvod do iOS vývoje
Tvorba mobilních aplikací

• Software engineer ve společnosti
Enverus

• Absolvent doktorského studia
informatiky na UP

• Mám cca 8 let zkušenosti s vývojem
pro iOS

• Předchozí projekty:

• UPlikace

• Noc vědců

Kdo jsem

Organizační informace
• Úkoly budu kontrolovat pouze na semináři

• Na vypracování máte čas do následujícího semináře

• Konzultace po domluvě a ideálně online přes MS Teams

• Použití AI vám nezakazuju, ale pokud mi nedokážete vysvětlit řešení, je to
automaticky nevypracovaný úkol

• Plagiátorství: V případě shodných řešení bude studentům odebrána možnost
získat zápočet

Obsah semináře

• Vývojové prostředí

• Základy jazyka Swift

Vývojové prostředí

Xcode
• Vývojové prostředí (IDE) pro vývoj aplikací na platformách firmy

Apple

• Hlavní funkce zahrnují:

• Návrh uživatelského rozhraní (UI)

• Psaní kódu v jazyce Swift nebo Objective-C

• Ladění aplikací

• Testování na simulátorech nebo fyzických zařízeních

Xcode

Vytvoření projektu

Vytvořit nový projekt

Vytvořit nový projekt

Vybereme typ aplikace

Vybereme typ aplikace

Vybereme typ aplikace

Vybereme typ aplikace

Nastavení projektu

Nastavení projektu

FirstProject

Product Name v Xcode by měl být
jedinečný, krátký, bez mezer a
speciálních znaků, a začínat velkým
písmenem.

Příklad správných názvů:
✅ WeatherTracker | ✅ ToDoApp

Příklad špatných názvů:
❌ 123MyApp | ❌ My App

Nastavení projektu

FirstProject

cz.upol

Organization Identifier je součástí
Bundle Identifier, který jednoznačně
identifikuje aplikaci v App Store a na
zařízeních. Používá se v reverse
domain notation.

Product Name v Xcode by měl být
jedinečný, krátký, bez mezer a
speciálních znaků, a začínat velkým
písmenem.

Příklad správných názvů:
✅ WeatherTracker | ✅ ToDoApp

Příklad špatných názvů:
❌ 123MyApp | ❌ My App

Vybereme adresář

Vybereme adresář

Základy jazyka Swift

Swift

• Kompletně nový jazyk

• Uveden 6/2014, vývoj od 2010

• Každý rok nová major verze

• Zpočátku radikální vývoj rozbíjel kompatibilitu od verze 2 open
source pod Apache licencí

• Kompletní dokumentace: https://docs.swift.org/swift-book/
documentation/the-swift-programming-language/

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/

Balíčkovací systémy
• Swift Package Manager

• Nativní řešení, získává na oblibě, decentralizovaný

• Správa přes UI

• Cocoapods

• Nejrozšířenější správce závislostí

• Centralizované úložiště, používá Podfile (soubor s deklarací závislostí)

• Carthage

• Lehká a flexibilní alternativa

• Decentralizovaný přístup, generuje frameworky namísto integrace kódu.

• Začneme klasicky s programem “Hello
World!”

• Spuštení programu:

• Terminál: swift main.swift

• Swift Playground: https://
developer.apple.com/swift-
playground/

• Online: https://www.programiz.com/
swift/online-compiler/

Hello World!
// Vytiskne řetězec + \n
print("Hello, World!")

// Vytiskne pouze řetězec
print("Hello World!",
 terminator: "")

https://developer.apple.com/swift-playground/
https://developer.apple.com/swift-playground/
https://developer.apple.com/swift-playground/
https://www.programiz.com/swift/online-compiler/
https://www.programiz.com/swift/online-compiler/
https://www.programiz.com/swift/online-compiler/

• var definuje proměnnou, jejíž hodnota
se může změnit

• let definuje konstantu, která se
nemůže změnit

• Pro názvy používáme camelCase

• Není nutné používat ;

• Swift používá typovou inferenci

• Swift vyžaduje inicializaci proměnné
před prvním použitím

Proměnné a konstanty

var name = “Alice"

let age = 25

• Swift má silnou typovou kontrolu.

• Nemůžeme tedy například provádět
aritmetické operace mezi Int a
Double

• Hlavní typy: Int, Double, Bool,
String

• Při definici proměnné můžeme (a je to
běžné) i datový typ

Datové typy
var number: Int = 10

var price: Double = 99.99

var isSwiftFun: Bool = true

var message: String = “Hi"

• Podmínky používají relační operátory:
==, !=, <, >, <=, >=

• Nejsou potřeba závorky (…) kolem
podmínky

• Složitější podmínky je možné vytvářet
pomocí logických operátorů && (AND)
a || (OR)

Podmínky
let age = 18
let isCarAvaliable = false

if age >= 18 {
 print("Můžeš řídit.")
} else {
 print("Nemůžeš řídit.")
}

// Složitější podmínka
if age >= 18 && isCarAvaliable {
 print("Můžeš řídit.")
} else {
 print("Nemůžeš řídit.")
}

• Místo zanořených if-else bloků,
kde pouze vybíráme jednu hodnotu je
lepší využít konstrukce switch

• Je možné “přepínat” všechny základní
datové typy + výčtové datové typy

• Switch musí pokrýt všechny možné
případy nebo mít default větev

• Zde je prezentován pouze základní
výraz 􀄫 více v dokumentaci

Switch
let grade = "B"

switch grade {
case "A":
 print("Výborně!")
case "B":
 print("Dobrá práce!")
default:
 print("Zkus to lépe.")
}

• For-in iteruje přes sekvence (Array,
Range)

• While se opakuje, dokud platí
podmínka

• Repeat-while nejprve provede blok
kódu, poté kontroluje podmínku

• Použijeme for-in, pokud víš, kolikrát
se má smyčka opakovat. Použijeme
while, pokud to nevíme předem.

Cykly (for, while)
// Čísla 1,2,3,4,5
for number in 1...5 {
 print("Číslo: \(number)")
}

// Čísla 1,2,3,4
for number in 1..<5 {
 print("Číslo: \(number)")
}

var count = 3

while count > 0 {
 print(count)
 count -= 1
}

• func definuje funkci

• Pro názvy používáme camelCase

• Parametry mají pevně daný typ

• Funkce mohou mít výchozí hodnoty
parametrů

• Pokud chceme předat hodnotový typ
odkazem je nutné definovat parametr
jako inout

Funkce
func greet(name: String) -> String {
 return "Ahoj, \(name)!"
}

greet(name: "Petr")

func sayHello(name: String = "světe") {
 print("Ahoj, \(name)!")
}

sayHello()
sayHello(name: “Jana")

func changeValue(number: inout Int) {
 number = Int.random(in: 0...100)
}

var number = 2
changeValue(number: &number)

• Pole je datový typ předávaný
hodnotou

• Ve skutečnosti však Swift předává
kolekce odkazem a při zápisu vytvoří
kopii

• Přes kolekce lze snadno iterovat
pomocí for-in cyklu

• Slovník ukládá data ve formátu klíč-
hodnota

 Kolekce
var fruits = ["Jablko", “Banán",
 "Hruška"]
// Přístup k prvnímu prvku
fruits[0]
// Přidání prvku
fruits.append("Broskev")
// Odstranění druhého prvku
fruits.remove(at: 1)
// Počet prvků
fruits.count

var person = ["Sheldon": "Dr.",
 "Wolowitz": "Mr."]
// Získáme hodnotu
person["Sheldon"]
// Odstraníme hodnotu
person["Sheldon"] = nil

• Struct je hodnotový typ – při
přiřazení nebo předání funkci se
kopíruje

• Používá se pro jednoduchá data, jako
jsou modely, souřadnice, nastavení
atd

• Mutating umožňuje měnit vlastnosti
struktury uvnitř metody.

• Neumožňuje dědičnost – každý struct
je samostatný

• Struktury jsou thread-safe

Struktury
struct Point {
 var x: Int
 var y: Int

 mutating func moveBy(x: Int, y: Int) {
 self.x += x
 self.y += y
 }
}

var p = Point(x: 3, y: 4)
p.moveBy(x: 2, y: -1)
print(p) // Point(x: 5, y: 3)

• Class je referenční typ – při přiřazení
se nepřekopíruje, ale předává se
reference.

• Umožňuje dědičnost (inheritance) –
může mít nadřazenou třídu.

• Změny v objektu se projeví všude, kde
je reference na instanci.

Třídy
class Animal {
 var name: String

 init(name: String) {
 self.name = name
 }

 func makeSound() {
 print("Nějaký zvuk")
 }
}

class Dog: Animal {
 override func makeSound() {
 print("Haf haf!")
 }
}

let dog = Dog(name: "Rex")
dog.makeSound() // Haf haf!

Shrnutí struct vs. class

Vlastnost struct (Struktura) class (Třída)

Typ Hodnotový (Value Type) Referenční (Reference Type)

Kopírování Vytvoří novou kopii Předává referenci

Dědičnost ❌ Nepodporuje ✅ Podporuje

Změna vlastností Je potřeba mutating Není potřeba mutating

Thread-safe Ano – každá instance je unikátní Možné problémy – reference mohou
být sdílené

• Používáme pro hodnoty, které
můžeme vypočítat z ostatních
vlastností

• var area není ukládána do paměti,
ale vypočítává se při každém přístupu

• Může mít také set blok pro aktualizaci
hodnoty

• Computed properties používáme
místo funkcí, pokud se hodnota
logicky vztahuje k objektu.

Computed properties
class Rectangle {
 var width: Double
 var height: Double

 var area: Double {
 return width * height
 }

 var perimeter: Double {
 get { return 2 * (width + height) }
 set { width = newValue / 4
 height = newValue / 4 }
 }

 init(width: Double, height: Double) {
 self.width = width
 self.height = height
 }
}

let rect = Rectangle(width: 5, height: 10)
print(rect.area) // 50.0

• Umožňují proměnným nemít žádnou
hodnotu (nil)

• Swift neumožňuje nil v běžných
proměnných – musí být Optional

• Pokud chceme hodnotu “rozbalit” tak
použijeme !

• Nikdy nepoužívejte ! bez kontroly, zda
hodnota existuje!

• Pomocí operátoru ?? Můžeme
definovat výchozí hodnotu pokud je
hodnota nil

Optionals

var name: String? = nil
name = "Alice"
print(name) // Optional("Alice")

// Alice (ale může způsobit
crash, pokud je nil!)
print(name!)

var username: String? = nil
let user = username ?? "Vader"
print(user) // "Vader"

• If let bezpečně rozbalí Optional a
použije jeho hodnotu

• Pokud je hodnota nil, provede se
else (je-li přítomna) blok

• Guard let Slouží ke kontrole
podmínek na začátku funkce

• Pokud podmínka není splněna, kód
okamžitě opustí funkci (return)

Bezpečné rozbalení Optional
var name: String? = "Alice"

if let unwrappedName = name {
 print("Ahoj, \(unwrappedName)")
} else {
 print("Žádné jméno")
}

func greet(name: String?) {
 guard let unwrappedName = name else {
 print("Jméno chybí!")
 return
 }
 print("Ahoj, \(unwrappedName)")
}

• Výčtový typ (enum) umožňuje
definovat sadu souvisejících hodno

• Každá hodnota (case) je unikátní a
typově bezpečná

• Enum může obsahovat asociované
hodnoty a výchozí hodnoty (raw
values)

• V enum je možné definovat metody

• Samostudium: rawValues, switch pro
výčtové typy

Výčtové typy
enum Direction {
 case north
 case south
 case east
 case west
}

let move = Direction.north
var current: Direction = .east

enum Barcode {
 case upc(Int, Int, Int, Int)
 case qrCode(String)
}

let upc = Barcode.upc(8,85909,51226,3)
let qr = Barcode.qrCode("ABC123XYZ")

Úkoly
https://vyjidacek.cz/tmai/
seminar1.php

